На підставі результатів експерименту встановлено, що ефективність процесу ущільнення та зневоднення червоного шламу під дією постійного електричного струму залежить від зміни величини ζ – потенціалу на поверхні поділу фаз між проясненою рідиною й ущільненим осадом. Зменшення значення ζ – потенціалу збільшує ступінь ущільнення шламу. Визначено, що колоїдна система має погану стійкість зі знаком заряду «+».

Проведено електрохімічне дження в системі «червоний шлам – вода» Показана можливість виникнення коагуляційних структур до складу яких входять молекули міцел, які мають як позитивний так и негативний заряд.

Визначені величини значення електрокінетичного потенціалу методом електрофорезу. Зроблено висновок, що система агрегативно нестійка, а колоїдні частки мають негативний заряд.

Вивчено вплив часу, напруги, концентрації шламу, рН-розчину на величину ξ потенціалу. Встановлено зменшення ξ потенціалу від названих факторів. Наведено механізм можливості ущільнення шламу за рахунок зміни в структурі адсорбційного шару.

Показано, що в електричному полі ущільнення червоного шламу досягає 24% об'єму шламового осаду при напрузі 150В

за 110хв. Без напруги цей показник становить 46-50%.

ЛІТЕРАТУРА:

- 1. Савицький, В. М. Відходи виробництва і споживання та їх вплив на ґрунти і природні води [Текст]: навч. пос. / В. М. Савицький, В. К. Хільчевський; за ред. В. К. Хільчевського. - К.: Видавничо-поліграфічний центр «Київський університет», 2007. − 152 c.
- 2. Овчарова, О. В. Інтенсифікація гравітаційного осадження та ущільнення залізовмісних шламів в електричному полі [Текст] / О. В. Овчарова, В. І. Сокольник, О. А. Атаманюк // Комунальне господарство міст. – 2013. – №107. – С. 291–295.
- 3. Винокурова, Т. Е. Опытное обезвоживание осадков станции аэрации при помощи электроосмоса / Т. Е. Винокурова // Труды аспирантов НГАСУ / Нижегор. гос. архитектур.-строит. ун-т. Н. Новгород, 1998. - Сб. 4. - С. 3-7.
- 4. Разгонова, О.В. Ущільнення та зневоднення червоного шламу під дією електричного поля / О. В. Разгонова, В. І. Сокольник// Восточно-европейський журнал передових технологій. – 2014. - № 72. - С. 4-7.
- 5. Громогласов А.А.Водоподготовка: процессы и аппараты. М.: «Энергоатомиздат», 1990. – 272c.
- 6. Григоров О.Н. Электрокинетические явления. М.: «Наука», 1973г.
- Фридрихсберг Д.А. Курс коллоидной химии. Л.: «Химия», 1980.

УДК 628.16

Душкин С.С.

Харьковский национальный университет городского хозяйства им. А.Н. Бекетова

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ НА СКОРЫХ ФИЛЬТРАХ С ИСПОЛЬЗОВАНИЕМ АКТИВИРОВАННОГО РАСТВОРА КОАГУЛЯНТА

Постановка проблемы

В технологическом процессе очистки воды фильтрование выполняется на скорых фильтрах с зернистой загрузкой после коагулирования и предварительного отстаивания осветленной воды. Из известных теорий процесса очистки воды фильтрова-

нием наибольшее признание получила теория Д.М. Минца [1,2], согласно которой процесс осветления фильтруемой суспензии можно рассматривать как суммарный результат двух противоположно направленных процессов: прилипание задерживаемых частиц к макроповерхности под действием сил адгезии и отрыва, ранее прилипших частиц под влиянием гидродинамических сил потока, и переноса их в следующие слои загрузки (суффозия). Осветление воды в каждом элементарном слое загрузки происходит до тех пор, пока интенсивность прилипания частиц превышает интенсивность их отрыва. По мере накопления осадка интенсивность отрыва частиц увеличивается. При очистке воды процесс фильтрования интересен в той стадии, когда прилипание частиц превалирует над их отрывом [3]. Соотношение между силами адгезии и гидродинамическими усилиями, возникающими при движении воды, может быть записано в виде неравенства.

$$\frac{\Gamma_{\scriptscriptstyle M}\delta}{f(l)}\rangle 3\pi\delta\eta V_{\scriptscriptstyle H}, \tag{1}$$

где $\Gamma_{\scriptscriptstyle M}$ — константа адгезии двух веществ (константа Гамакера); δ — размер прилипающих частиц; f(l) — величина, зависящая от формы частиц и расстояния между ними; η — вязкость воды; $V_{\scriptscriptstyle H}$ — составляющая скорости потока, нормальная к поверхности частицы.

Левая часть уравнения характеризует силы адгезии, правая — гидродинамические условия.

Отрыв частиц при воздействии водного потока происходит, когда сила отрыва F_{omp} в состоянии преодолеть силу адгезии F_{ad} и массу частиц P, т.е.

$$F_{omp} \ge \mu \cdot (F_{a\partial} + P),$$
 (2)

где μ — коэффициент трения.

Если $F_{a\partial} >> P$, то $F_{omp} \ge \mu \cdot F_{a\partial}$. Сила воздействия потока на частицу зависит от плотности и вязкости среды, диаметра частиц, скорости потока и условий обтекания прилипших частиц потоком.

Согласно Д.М. Минцу [3], критерием оптимального режима фильтрования служит отношение между продолжительностью защитного действия загрузки t_3 и временем работы фильтра до момента достижения предельной потери напора $t_{\rm H}$. В технологическом и экономическом отношениях наилучшим режимом является такой, при котором $t_3 = t_{\rm H}$. Тем не менее, с точки зрения санитарной надежности целесообразно принимать значение t_3 : $t_{\rm H} > 1$, так как при этом в течение всего фильтроцикла гарантируется высокое качество фильтрата,

повышается степень санитарной надежности сооружений.

Анализ последних исследований и публикаций

Одним из наиболее распространенных методов очистки воды от грубодисперсных и коллоидных загрязнений является метод обработки воды коагулянтами. Однако, при неблагоприятных условиях коагуляции: недостаточная щелочность, высокая цветность и низкая температура воды, расход реагента достаточно значителен, поэтому этот метод требует усовершенствования, а именно: повышение скорости формирования и выпадения коагулированной взвеси в осадок [4].

Анализ существующих методов повышения эффективности работы очистных сооружений при подготовке питьевой воды свидетельствует о том, что наиболее перспективными являются методы, связанные с модернизацией существующих и разработкой новых методов и конструкций водоочистных аппаратов [5].

Установлено, что обработка воды активированным раствором коагулянта позволяет увеличить гидравлическую крупность коагулированной взвеси. Ее целесообразно выполнять при содержании взвешенных веществ в осветляемой воде до 100–250 мг/дм³. Наиболее сильное влияние активированный раствор коагулянта оказывает на гидравлическую крупность взвеси 0,2 мм/с и более, то есть на наиболее мелкую и трудноудаляемую взвесь.

Использование активированного раствора коагулянта позволяет снизить расчетные дозы коагулянта в среднем на 25-30% без ухудшения качества осветления воды.

На основании анализа, исследований и публикаций предложен метод обработки воды и техническое устройство для интенсификации процесса осветления воды с применением активированного раствора коагулянта [6-8].

Формулировка цели статьи

В данной работе решение поставленной задачи заключается в исследовании процесса очистки питьевой воды на скорых фильтрах с использованием активированного раствора коагулянта сульфата алюминия. Последний позволяет снизить

расход реагентов, повысить качество очистки воды, увеличить производительность очистных сооружений, уменьшить себестоимость питьевой воды [9].

Изложение основного материала

Основные методологические аспекты проведенных исследований приведены в работе [10]. Схема лабораторной установки, позволяющей выполнять исследования по интенсификации процесса фильтрования воды с применением активированного раствора коагулянта приведена на рис. 1.

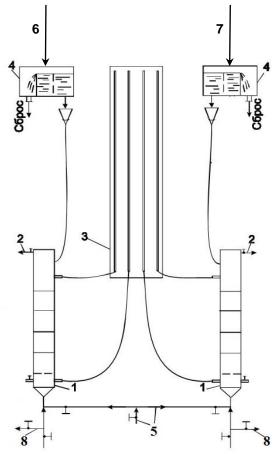


Рис. 1. Схема лабораторной установки 1 — фильтровальная колонка; 2 — отвод промывной воды; 3 — пьезометрический щит; 4 — стабилизирующие бачки; 5 — подача промывной воды; 6 — подача воды обработанной активированным раствором реагента; 7 — подача воды обработанной обычным раствором реагента; 8 — сброс воды в запасную емкость

Установка состоит из двух стеклянных колонн диаметром 100мм и высотой 1000мм, заполненных кварцевым песком

d=0.5-1.2мм, d_{экв}=0,7-0,8мм, высотой 800мм. Фильтрование осуществляется сверху вниз, скорость фильтрования не превышает 6-8м/ч.

При выполнении исследований, воду, обработанную реагентами — активированным (позиция 6) и обычным (позиция 7), подавали в стабилизационные бачки 4, затем на фильтрационные колонки 1. Промывку загрузки осуществляли водопроводной водой в течение 7 минут с интенсивностью 10л/с·м².

Исследования выполнены на воде канала Северский Донец – Донбасс в зимний и весенний периоды 2013 года. Качественная характеристика осветляемой воды приведена ниже (табл.1).

Таблица 1 - Качественная характеристика исследованного источника водоснабже-

ния					
Параметры воды канала Северский Донец – Донбасс	Период исследо- ваний				
	Зим-	Весенний			
	ний				
Температура, °С	0,3-0,5	5,5–6,1			
Взвешенные вещества, $M\Gamma/ДM^3$	5,5–6,1	11,4–12,2			
Цветность, град	20-25	25–30			
pН	8,0-8,1	8,1-8,2			
Общая жесткость, моль/дм ³	4,5–4,7	3,6–3,9			
Щелочность, моль/ $дм^3$	2,8–2,9	1,8–2,4			

Доза коагулянта сульфата алюминия не превышала $40 - 50 \text{ мг/дм}^3$, считая на продажный продукт.

Выполнено 7 серий экспериментов на двух параллельно работающих фильтровальных колонках: на одну из колонок подавалась вода, обработанная обычным раствором коагулянта и вода, обработанная активированным раствором коагулянта. Условия проведения — одинаковы.

Влияние обработки воды активированным раствором коагулянта на продолжительность защитного действия загрузки t_3 и время достижения предельно допустимой потери напора t_H показана на рис. 2 и в табл. 2.

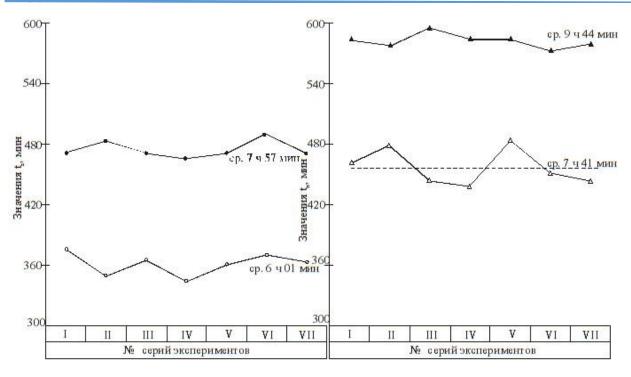
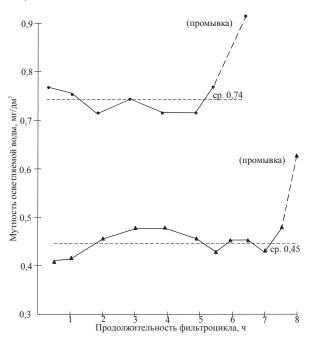


Рис. 2. Влияние обработки воды активированным раствором коагулянта сульфата алюминия на продолжительность защитного действия загрузки t_3 и время достижения предельно допустимой потери напора $t_{\rm H}$:

Таблица 2 - Влияние обработки воды активированным раствором коагулянта сульфата алюминия на продолжительность защитного действия загрузки фильтра (t_3) и время достижения предельно допустимой потери напора (t_H)


№ серии экспе-ри- ментов	Продолжительность защитного действия загрузки фильтра (t ₃ , мин) при обработке воды:		Время достижения предельно допустимой потери напора (t _н , мин) при обработке воды:		Эффективность изменения параметров фильтрования, %	
рик	обычным	активирован-	обычным	активирован-		
ce	раствором	ным раствором	раствором ко-	ным раствором	t_3	$t_{\scriptscriptstyle \mathrm{H}}$
Ž	коагулянта	коагулянта	агулянта	коагулянта		
I	375	475	465	585		
1	(6 ч 15 мин)	(7 ч 55 мин)	(7 ч 45 мин)	(9 ч 45 мин)		
II	350	485	480	580		
	(5 ч 50 мин)	(8 ч 05 мин)	(8 ч 00 мин)	(9 ч 40 мин)		
III	365	475	450	595		
	(6 ч 05 мин)	(7 ч 55 мин)	(7 ч 30 мин)	(9 ч 55 мин)		
IV	345	470	445	585		
	(5 ч 45 мин)	(7 ч 50 мин)	(7 ч 25 мин)	(9 ч 45 мин)		
V	360	475	485	585		
	(6 ч 00 мин)	(7 ч 55 мин)	(8 ч 05 мин)	(9 ч 45 мин)		
VI	370	490	455	575		
	(6 ч 10 мин)	(8 ч 10 мин)	(7 ч 35 мин)	(9 ч 35 мин)		
VII	365	475	450	580		
	(6 ч 05 мин)	(7 ч 55 мин)	(7 ч 30 мин)	(9 ч 40 мин)		
cp.	361	477	461	584	32,1	26,6
знач.	(6 ч 01 мин)	(7 ч 57 мин)	(7 ч 41 мин)	(9 ч 44 мин)	· 	

Анализ опытных данных свидетельствует, что обработка воды активированным раствором коагулянта позволяет интенсифицировать процесс фильтрования воды, что сказывается на продолжительности защитного действия загрузки t_3 и времени достижения предельно допустимой потери напора t_H .

Среднее значение t_3 при обработке воды обычным и активированным растворами коагулянтов составляет, соответственно, 361 и 477 мин. Время достижения предельно допустимой потери напора (t_H) при обработке воды обычным раствором коагулянта находится в пределах 450–480 мин, активированным – 575–595 мин. Эффективность изменения параметров фильтрования при использовании активированного раствора коагулянта сульфата алюминия составляет: t_3 увеличивается 32,1%, t_H увеличивается 26,6%.

Среднее значение t_3 при обработке осветляемой воды обычным раствором коагулянта составляет 6 ч 01 мин, активированным – 7 ч 57 мин; изменение t_H соответственно – 7 ч 41 мин и 9 ч 44 мин (рис. 3), что позволяет сделать вывод о возможности интенсификации работы фильтров при обработке осветляемой воды активированным раствором коагулянта.

Использование активированного раствора коагулянта при очистке воды позволяет увеличить продолжительность фильтроцикла на 25-30% без ухудшения качества фильтрата. При этом качество фильтрата на продолжении фильтроцикла на 30-35% выше, чем при использовании обычного раствора коагулянта, что подтверждается опытными данными, приведенными в табл. 3 и на рис. 3. Мутность фильтрата осветленной воды при обработке обычным раствором коагулянта осветляемой воды находится в пределах $0,72-0,77 \text{ мг/дм}^3$ при использовании активированного раствора коагулянта качество фильтрата значительно выше и составляет 0,41–0,48 мг/дм³. Продолжительность фильтроцикла при обработке воды обычным раствором коагулянта – 6 ч – 6 ч 30 мин, активированным – 7 ч 30 мин – 8 ч (рис. 3). Мутность фильтрата на всем протяжении фильтроцикла стабильная, среднее повышение продолжительности фильтроцикла при использовании активированного раствора коагулянта составляет 25%, уменьшение мутности фильтрата – 39,1%.

– активированный раствор коагулянта; ▲ обычный раствор коагулянта
Рис. 3 – Влияние активированного раствора коагулянта сульфата алюминия на
 продолжительность фильтроцикла

Анализ опытных данных показывает, что при обработке осветленной воды активированным раствором коагулянта процессы осветления и отстаивания коагулированных примесей протекают более интенсивно, вследствие снижения структурно-механической гидратации коагулированного осадка происходит увеличение удельного веса коагулированных примесей, имеющих место при использовании активированного раствора коагулянта.

Таблица 3 - Влияние активированного раствора коагулянта сульфата алюминия на продолжительность фильтроцикла

№	Продолжитель-	Мутность фильтрата осветлен-		Изменение, %	
Π/Π	ность фильтро-	ной воды, $M\Gamma/дM^3$		Tismeneime, 70	
	цикла, ч	обычный раст-	активирован-	продолжитель-	мутности
		вор коагулянта	ный раствор	ности фильтро-	фильтрата
			коагулянта	цикла	
1	0,5	0,77	0,41		
2	1	0,75	0,42		
3	2	0,72	0,46		
4	3	0,74	0,48		
5	4	0,72	0,48		
6	5	0,72	0,46		
7	5 ч 30 мин	0,77	0,43		
8	6	0,75	0,45		
9	6 ч 30 мин	0,93	0,45		
	(промывка)				
10	7	_	0,43		
11	7 ч 30 мин	_	0,48	25	39,1
12	8 (промывка)	_	0,63		

Продолжительность защитного действия кварцевой загрузки возрастает с увеличением удельного веса коагулированных примесей за счет уменьшения структурно-механической гидратации их, что позволяет, в конечном итоге, увеличить защитное действие кварцевой загрузки по сравнению с обычной коагуляцией примесей. Одновременно увеличится время достижения предельно допустимой потери напора. При этом обеспечиваются условия санитарной надежности очистки воды $(t_3 > t_n)$, что позволяет обеспечить оптимальный режим фильтрования воды через зернистую загрузку фильтра.

Вывол

Обработка воды активированным раствором коагулянта позволяет интенсифицировать процесс фильтрования воды, что сказывается на продолжительности защитного действия загрузки t_3 и времени достижения предельно допустимой потери напора t_n : в среднем t_3 увеличивается на 32,1%, а t_n — в среднем 26,6%, при этом обеспечиваются условия санитарной надежности очистки воды ($t_3 > t_n$), для достижения оптимального режима фильтрования воды через фильтрующую загрузку фильтра.

ЛИТЕРАТУРА:

- 1. Минц Д.М. Теоретические основы технологии очистки воды / Д.М. Минц. М.: Стройиздат, 1964. 156 с.
- 2. Драгинский В.Л. Повышение эффективности реагентной обработки воды на водопроводных станциях / В.Л. Драгинский, Л.П. Алексеева // Водоснабжение и санитарная техника. 2000. №5. с. 45 47.
- 3. Минц Д.М. Подготовка воды для питьевого и промышленного водоснабжения: Учебное пособие / Д.М. Минц, А.А. Кастальский. М.: Высш. шк., 1984. 368 с.
- 4. Володченко О.В. Анализ методов интенсификации работы очистных сооружений / О.В. Володченко // «Коммунальное хозяйство городов»: Научн.-техн. сб. К.: «Техника», 2002 Вып. 36. С. 267-271.
- 5. Татура А.Е. Реконструкция систем и сооружений водоснабжения и водоотведения / А.Е. Татура. Ижевск: ИжГТУ, 2003. 178 с
- 6. Душкин С.С. Очистка маломутных вод высокой цветности активирован-ным раствором коагулянта / С.С. Душкин // Науковий вісник будівництва: наук.- техн. зб. Харків: ХНУБА. ХОТВ АБУ, 2012. Вип. 71. С. 410-416.
- 7. Пат. 103295 Україна, МПК С02 F1/48. Спосіб приготування розчину алюмовмісного коагулянту для очищення природних і стічних вод / Епоян С.М., Душкін С.С.; заявник та власник ХНУБА № и 201210965; заявл. 19.09.2012; опубл. 29.09.2013, Бюл. № 18.

- 8. Душкин С.С. Использование активированных растворов реагентов при подготовке экологически чистой питьевой воды / С.С. Душкин // Экология: образование, наука, промышленность и здоровье. г. Белгород 14-16 ноября 2013г. сб. докладов V междунар. науч. Практ. конф. Белгород: Изд-во БГТУ, 2013. С. 26-29.
- 9. Душкин С.С. Активированные растворы реагентов в процессах очистки воды / С.С. Душкин, Г.И Благодарная // Екологічні проблеми природокористування та ефек-

- тивне енергозбереження: зб. Тез доповідей між нар. наук.-практ. Конф. (27-29 квітня 2010р. м. Київ). К.: КНУБА, 2010. С. 21-24
- 10. Душкин С.С. Методологические аспекты проведения исследований при использовании активированных растворов коагулянта в процессе очистки воды / С.С. Душкин // Комунальне господарство міст: наук.- техн. зб. Харків: ХНАМГ, 2012. Вип. 105. С. 320 334.

УДК 632.95.024

Скочко С.А., Нестеренко Е.В., Юрченко В.А.

Харьковский национальный университет строительства и архитектуры, Харьков

УТИЛИЗАЦИЯ ОРГАНИЧЕСКИХ ОТХОДОВ ПУТЕМ ПЕРЕРАБОТКИ В БИОГАЗОВЫХ УСТАНОВКАХ С ПОЛУЧЕНИЕМ БИОУДОБРЕНИЙ

Введение. В результате эксплуатации биогазовых установок в сельском и коммунальном хозяйстве получают жидкие органические удобрения называемые биоудобрениями. Они могут использо-ДЛЯ прикорневой подкормки ваться сельскохозяйственных культур. После биогазовой установки сброженный навоз, канализационные стоки и биологические отходы имеют более высокое качество по сравнению с обычным и в эквивалентных дозах повышает урожайность сельскохозяйственных культур на 10 - 20%. [1-5]. Биоудобрения в отличие от минеральных удобрений, которые усваиваются всего на 35 – 50%, усваиваются почти полностью, выравнивают кислотно-щелочной баланс почвы и уменьшают истощение почвы. При внесении биоудобрения не увеличивают содержание нитратов в продуктах и почве, поддерживая высокую урожайность сельскохозяйственных культур.

Цель работы – анализ агрохимической характеристики жидких органических биоудобрений, получаемых при сбраживании сельскохозяйственных отходов.

Минеральные сельскохозяйственные удобрения имеют целый ряд недостатков, в том числе — развитие негативных экологических процессов.

При чрезмерном применении фосфатных удобрений в почве накапливается P_2O_5 в таком количестве, которое способно тормозить процессы ее самоочищения. Кроме того, фосфаты с поверхностными сточными водами могут попадать в открытые водоемы и вызывать их эвтрофикацию [5–7]. Фосфатные удобрения содержат примеси фторсодержащих соединений (от 0,2 до 4%), железа, стронция, селена, мышьяка (не менее 0,006%), тяжелых металлов (не менее 0,008%), в том числе кадмия (10 – 30 мг/кг), радионуклидов (урана, тория) [5].

Вместе с калийными удобрениями в почву поступают хлорид анионы. Накопление значительных количеств калия в почве может вызвать нарушение соотношения между калием и натрием в питьевой воде, пищевых продуктах и отрицательно повлиять на здоровье человека — вызвать нарушение деятельности сердечно — сосудистой системы.

При превышении норм расхода микроудобрений микроэлементы могут накапливаться в почве и растениях в избыточных количествах, оказывая отрицательное влияние на здоровье населения. При нера-